
T: 800-638-6316
www.mccabe.com

Page 1 of 12

Table of Contents

What is Baseline Code

Analysis? ..……………...........2

Importance of Baseline Code
Analysis..................................2

The Objectives of Baseline Code

Analysis..................................4

Best Practices for Baseline Code
Analysis..................................4

Challenges of Baseline Code

Analysis..................................7

McCabe IQ Functionality for
Baseline Code Analysis8

The McCabe IQ Advantage.........10

Appendix A: McCabe IQ Metrics
 By Category.......…...............11

Who Should Read This

Paper?

Software managers who
are:

• In need of accurate,
profitable representations
of the code they manage

• Establishing or
restructuring their
company‘s QA
department and who want
to equip it with state of
the art software
management
technologies.

White Paper

Baseline Code Analysis Using
McCabe IQ

Software managers are always looking for better and innovative ways to make
software development more efficient and effective throughout the product life
cycle. Development and quality assurance (QA) managers often ask questions
such as: How can I get the code into production faster? What code should I
refactor? How should I best assign my limited resources to different projects?
How do I know if code is getting better or worse as time goes on?

Such questions are especially difficult to answer in today‘s business
environment. Answering them with any degree of confidence presumes
intimate knowledge of the code being managed, something that is becoming
less and less feasible for managers without the help of additional tools. For
example, software is growing to previously unimaginable levels of size and
complexity, and it is more and more common for the code being managed to
have been developed by someone else, such as a third party vendor or a
different department within the company. In either case, the code resists
comprehensibility: What are its components? How are they all related? Which
are the critical ones for maintenance, enhancement, and testing initiatives?

DeMarco‘s insight in 1982 has now become a well-known adage in software
engineering: Managers cannot control or manage what they cannot
measure. What managers need are measurements that makes the source code
comprehensible in terms of structure (showing how all the different modules fit
together) and quality (revealing the relative size, complexity, and testedness of
the various modules). Baseline code analysis, the subject of this paper, is a
method of establishing such measurements in order to help managers make
more informed decisions about the product throughout its life cycle.

Purpose of this Paper

This document has been written to provide the answer to three basic
questions:

• What is baseline code analysis and why is it important?

• What are the challenges of baseline code analysis?

• How can baseline code analysis with McCabe IQ be used to add value to

Development and QA processes?

T: 800-638-6316
www.mccabe.com

Page 2 of 12

What is Baseline Code Analysis?

Any kind of comprehensive analysis of source code can be considered baseline
code analysis. In essence, baseline code analysis identifies and quantifies the
elemental building blocks of a given program, for example, its various lines of
code, modules, and logical paths. With this data, baseline code analysis can
provide structural and metrical representations of the code.

Structural Representations

Baseline code analysis can provide a ‘map’ of the program‘s components, from
the highest-level view of all modules and their calling hierarchy to the lowest-
level view of an individual path (decision sequence) within a module. As
programs grow in size and complexity, structural representations make them
instantly comprehensible and therefore more manageable.

Metrical Representations

Baseline code analysis can provide software metrics - quantitative data on
various measurable elements of source code. Metrics are either collected (by
measuring such things as lines of code, the number of logical paths, and the
number of ‘children’) or calculated (derived from measurements using
mathematical formulas).

Metrics are generally collected and calculated on a module-by-module basis,

 Meaningful Thresholds they are used to highlight areas of code that exhibit significantly low or high
values vis-à-vis established threshold values. For example, independent

 Numerous independent
 studies as well as standards studies indicate that the likelihood of introducing a defect into a module you
 published by the National are modifying increases exponentially if that module has more than 10 logical
 Institute of Standards and paths. Baseline code analysis can highlight the modules that have more than

 Technology (NIST) have 10 logical paths, allowing managers to flag them as particularly risky modules
 established threshold to modify. Other characteristics that metrics can reveal on a module-by-
 guidelines that turn source module basis are maintainability, reusability, redundancy, complexity, and
 code metrics into reliable testedness.
 indicators of software quality

Importance of Baseline Code Analysis

The primary importance of baseline code analysis is that it helps managers to
understand, in software engineering terms, the code they have to manage.
Further, baseline code analysis provides objective representations of the
structure and quality of the code being managed. This means that the code

T: 800-638-6316
www.mccabe.com

Page 3 of 12

The 80-20 Rule

It is well known that on
average 20% of the code
accounts for 80% of the
resource usage, problems,
and errors - i.e., the sum of
expenditures - spent
throughout the product cycle.
That 20% is comprised
precisely of the most complex
segments of the code, and
baseline code analysis is the
best tool available for isolating
it. With baseline code
analysis, that critical 20% can
be recognized from the
beginning of the product cycle
and taken into account in all
decisions throughout the QA
process.

 More on Trend Analysis is

itself is the final reference point for management decisions, taking guesswork,
intuition, and other unreliable methodologies out of the picture. Baseline code
analysis is also important for the following reasons.

Increased Effectiveness of Development and QA Efforts

Baseline code analysis objectively identifies the most complex areas of the code
- that 20% of the code that accounts for 80% of the problems. With this
knowledge, managers can allocate appropriate resources. They can be assured
that their most experienced developers are assigned to the most critical areas of
the program; they can focus testing resources where modifications to a program
are most likely to have introduced defects.

The ability to pinpoint problematic code early in the production cycle is also an
important feature of baseline code analysis. Studies have shown that the cost
of finding and fixing a defect increases as software is promoted through its life
cycle. By targeting problematic code from the beginning of its life cycle,
baseline code analysis encourages early defect detection and prevention. In
short, baseline code analysis allows software managers to allocate the most
cost-effective resources to the most critical parts of the code at the most
advantageous points in the product cycle.

Increased Efficiency of Development and QA Effort

Baseline code analysis provides managers with crucial information for
streamlining development and QA efforts. For example, it allows QA managers
to instantly identify untested areas of a program under test. With this
knowledge, managers can streamline test plans, short-cutting the quest for
meaningful tests and preventing such common problems as overtesting
(spending excessive time on areas of the program that are at low risk for
defects) and redundant testing (testing the same functions over and over
again).

Historical Trend Analysis

 For a more detailed As the program evolves from revision to revision, it changes in terms of size
 discussion of McCabe I Q and quality. Baseline code analysis provides a historical record of each
 and trend analysis, read the revision‘s metric values so that managers can be sure the trends are not
 McCabe paper titled, moving in undesirable directions - for example, getting unnecessarily complex
 “McCabe Recommended and difficult to test, or getting more and more unstructured and costly to
 Approach to Code Reviews.” maintain (the hallmark of “spaghetti code”).

T: 800-638-6316
www.mccabe.com

Page 4 of 12

A Typical Scenario

In today‘s market, software is
often produced through third
party arrangements, or
purchased from other
companies. Baseline code
analysis provides valuable
insight into the code that is
being transferred.

Maintenance departments
that often take the ownership
of the developed code can
perform baseline code
analyses to become familiar
with the code characteristics
of inherited programs in
order to allocate appropriate
resources for future
enhancements and bug
fixing.

The Objectives of Baseline Code Analysis

Given the structural representations and the range of metrics it provides, the
fundamental objectives of baseline code analysis can be summarized as
follows:

• To objectively identify the most complex and unstructured parts of the code.

Baseline code analysis can be used to highlight the parts of the code that
exceed given metrics thresholds. Managers get answers to such questions as:
Where is the code going to be particularly difficult to maintain? Where are the
segments of the code most at risk for introducing defects? How has a change
that has been made impacted the quality of the module?

• To evaluate the scope of software modifications.

Structural analysis can reveal all modules of a program that are related in
the calling hierarchy to a module that is targeted for modifications.
Managers get answers to such questions as: How widespread is a proposed
change‘s potential influence? What parts of the code need regression testing
(and which parts do not need regression testing!) as the result of a change?

• To assist managers in making informed decisions about allocating resources
for testing.

Baseline code analysis can identify a collection of testable areas of the
program, and it can determine which areas have and have not been covered
by a given set of tests. Managers get answers to such questions as: How
much testing should be performed? How much testing is left to be done?
On which parts of the code should testing be focused?

• To facilitate software refactoring/reengineering efforts.

Metrics can reveal areas of the code that are good candidates for refactoring -
that is, areas that, if refactored, would mean substantial savings in time and
resources down the road. Managers get answers to such questions as: Which
parts of the software are redundant or reusable? Which parts are costly to
maintain, or overly complex (‘spaghetti’ code)?

Best Practices for Baseline Code Analysis

This section outlines practices shared by companies that have profitably
incorporated baseline code analysis into their development and QA processes.
The most successful baseline code analysis enterprises tend to:

• Develop a measurement program

• Streamline and continuously improve Development and QA processes

• Automate!

T: 800-638-6316
www.mccabe.com

Page 5 of 12

Best Practice #1
Develop a Measurement Program

There are two primary imperatives for establishing a measurement program:

• To identify metrics of interest for your development environment

• To establish a set of policies for the regular generation of reports.

Identify Metrics of Interest

It is crucial to identify a set of metrics that can be used compositely to
represent the code in certain ways in order to address specific management
goals. In developing a set of metrics of interest, focus on four major
characteristics of the software: size, quality, risk, and readiness.

• Size. Use a set of metrics that represent the size of the program. Software

 McCabe IQ Metric s size can be measured with a variety of metrics (for example, line and
 branch counts) and is a good initial indicator of code complexity.

 For a list of specific
metrics returned by • Quality. ‘Good quality’ code is code that is well structured and therefore

 McCabe IQ in each easy to understand, modularize, and maintain. Use a set of metrics that
 category - size, quality, provide a measure of unstructured code segments. For example, an
 risk, and readiness - refer excessive number of class couplings can be an indicator of
 to Appendix A at the end unstructuredness.
 of this document.

• Risk. Use a set of metrics that indicate the likelihood of finding or
introducing defects in the various code segments. Advanced indicators of
code complexity are essential here. Whenever code gets exceedingly
complex - for example, deeper in the inheritance hierarchy, or less cohesive
due to the dissimilarity between methods in a class - it can be considered at
greater risk for defects.

• Readiness. Use a set of metrics that measure tested segments of the

code. Metrics can be acquired, for example, that indicate tested lines,
branches, and paths. Metrics that measure tested segments of the code
can be used to determine the ‘readiness’ of branches and paths - that is,
the extent to which they can be considered stable and defect-free.

Establish Policies for Continuous Reporting

Once you have isolated a set of metrics that address your specific management
needs, it is important to consider baseline code analysis‘ place within the
Development and QA process. At what intervals should reports be generated
to monitor software metrics? Or, what events should trigger the generation of
what reports? Ideally, baseline code analysis is not only used to provide a
one-time insight into the code of interest but is also used regularly to provide a
means for monitoring the code at intervals throughout the development cycle.

T: 800-638-6316
www.mccabe.com

Page 6 of 12

Another Best Practice:
Take Control of the
Software Development
Process

Once problematic code is
identified by baseline code
analysis, management is
faced with a welcome
challenge - cost-effective
choices in the interests of a
reliable and stable product.
For example, should
appropriate resources be
allocated to accommodate it?
Or should the code be
targeted for refactoring?
Choosing the former can
often be a time saver up
front, but it trades-off on
maintainability down the
road. On the other hand,
depending on the
development environment,
choosing the latter may be
both ideal and feasible.

Best Practice #2
Streamline & Continuously Improve Development and QA Processes
The information baseline code analysis provides can be used to make software
development, maintenance, and testing efforts more efficient and effective.
Some proven strategies for streamlining and improving these areas of
production are discussed below.1

Improve Software Change Initiatives

• Make decisions about scheduling based on an assessment of the scope of

proposed changes.
• Make decisions about resource allocations based on the complexity of

modules targeted for change. Assign more experienced resources and more
time to design, change, and review the complex code.

• Establish a change/version control process. As the program changes in
development, perform code analyses at certain milestones, and compare the
results with the baseline code analysis to evaluate the trend in code
complexity and other aspects of the software.

Improve Testing

• Establish a threshold for the completion of testing using the determination

baseline code analysis makes of testable units of code.
• Use metrics that indicate tested paths and branches of code to streamline

test plans and track the degree of 'readiness' of the code.
• Use risk and complexity analyses to establish guidelines for how much

testing should be performed for different components of the software.
Perform more rigorous path coverage testing for the parts of the program
most at risk from defects.

Streamline Software Redevelopment Efforts

• Use customized reports and code visualization to identify the “outliers” - code

segments that register metrics values outside the normal range for the
software. Outliers identify code that is hard-to-maintain and error-prone.

1 McCabe provides white papers specifically addressing the benefits of baseline code
analysis for the three Development and QA processes discussed in this section (software
change initiatives, testing/QA, and reengineering). For a more in-depth treatment of how
baseline code analysis can help in these areas, refer to the appropriate white paper:
“McCabe Recommended Approach to Software Change Analysis,” “Improved Testing
Using McCabe IQ Coverage Analysis,” or “McCabe Recommended Approach to Code
Reviews.”

T: 800-638-6316
www.mccabe.com

Page 7 of 12

• Focus redevelopment efforts on the outliers, particularly when they are

functionally critical. Simplify and restructure such code segments to make
them less costly and more stable.

• Use detailed architectural analysis to pinpoint redundant code. Target
redundant code to reduce the system‘s overall complexity and size, easing
overall maintenance requirements and increasing the performance.

Best Practice #3
Automate!

Use automated tools to collect metrics and to generate reports. And use
automated tools that are flexible and can be adapted to your analysis needs -
that is, tools that do not force you to adapt your analysis environment to their
functionality.

Challenges of Baseline Code Analysis

Baseline code analysis can be difficult to implement for many reasons. To
begin with, management is faced with the need of selecting useful metrics and
establishing meaningful thresholds. What, for example, is an objective and
useful definition for code complexity? A meaningful answer to this question will
reflect a great deal of research into which metrics can be used as indicators of
what aspects of code quality.

Once a dependable set of metrics and thresholds is acquired, how can the
cavalcade of numeric data be presented such that it gives a comprehensive
picture of the code under analysis? Visualizing the results of baseline code
analyses is another high-order challenge, because a greater amount of
information can cause more problems than it solves if it cannot be channeled
into understandable and meaningful representations.

In other ways companies are challenged with making the most out of the
information baseline code analysis provides. Every stage of the product life cycle
can benefit from greater knowledge of the code in production, from planning to
development to testing. These efforts are often undertaken by different
managers, all devising different applications for the same fundamental set of
metrics. Integrating baseline code analysis across various Development and QA
groups cohesively and uniformly is important because it insures the greatest
communicability between stages in the development process. Achieving
cohesiveness and uniformity, however, can be difficult.

T: 800-638-6316
www.mccabe.com

Page 8 of 12

Custom Metrics and
Reports

If a user requires metrics not
provided by McCabe IQ, he or
she can import them from
other systems.
McCabe IQ also allows users
to define custom formulae
in order to acquire special-
needs derived metric values.
Custom measurements and
derived metrics can be
included in the baseline code
analysis to highlight aspects
of the code not otherwise
‘counted’‘ by McCabe IQ.
Similarly, custom reports
can be designed to show
specific ranges of metrics
values, to factor in custom
metrics, to sort data
according to user
specifications, and so on.

McCabe IQ Functionality for Baseline Code Analysis

McCabe IQ is a tool that can be used to perform baseline code analysis. Its key
functionality for the purposes of baseline code analysis includes:

• Metrics

• Reports

• Visualization

• Automation

• Integration

McCabe Metrics

McCabe IQ can record up to 105 metrics for a given program. These metrics
are gathered at the module (function/method/Perform Range) level, Program
Level (one or more source files), or System Level (one or more programs).
Some standard metrics that McCabe IQ returns are described in Appendix A of
this paper.2

All metrics returned by McCabe IQ come with default threshold values, that is,
the high and low values of what constitutes a ”normal‘ or ”ideal‘ range for the
given measurement. System-supplied thresholds represent industry standards,
but they can be adjusted, as needed.

McCabe Reports

McCabe IQ provides about 35 predefined reports from which users can choose.
McCabe IQ reports range from simple spreadsheets to graphical representations
of data that can be granulated for local (modular) and system analyses. To
enhance the comprehensibility of the results of the baseline code analysis, all
reports have hypertext capabilities that allow users to move easily between
related data sets and system components.

2 Appendix A does not describe all of McCabe IQ‘s metrics. For more information, refer to
the McCabe paper entitled, “Metrics and Thresholds in McCabe IQ.”

T: 800-638-6316
www.mccabe.com

Page 9 of 12

Battlemap. The rectangles represent modules; each
module is color-coded to indicate whether its value for
the selected metric is above (red), below (yellow), or
within (green) the threshold.

McCabe Visualization

McCabe IQ provides extensive visualization capabilities at all levels of analysis. The
basic McCabe IQ visualization tools are battlemaps and flowgraphs.

Battlemaps

Battlemaps display a structure chart that graphically
represents the functional
hierarchy of the program.
The “exclude” tool of the
Battlemap gives you the
ability to focus on
specific segments of the
program. Battlemap uses color- coding to overlay
code complexity on the
structure chart, allowing
managers to immediately
visualize the complex
and critical parts of the
code.

Flowgraphs

Flowgraphs graphically
display the control
structure of the code and
path of execution inside each module (method, function, or subroutine.) Flowgraphs
facilitate code comprehension and are used quite often for code reviews. They
highlight unstructured behavior of the code, and the user can graphically see the
cause of increased code complexity.

Each flowgraph is accompanied by an Annotated Source Listing (ASL) that
provides a mapping between the flowgraph and the lines of code. The ASL
allows users to view the specific lines of code that tend to contribute to the
increased complexity of the code.

Automation

McCabe metrics and graphical displays can
be obtained with the click of a mouse. You
simply tell McCabe IQ the source code that
you want it to analyze, and it

• ‘Reads’ the source code using powerful

parsers
• Identifies and measures the program‘s

various components
• Renders metrics and visuals.

T: 800-638-6316
www.mccabe.com

Page 10 of 12

Other McCabe IQ
Functionality

• Class Editor

Interface for viewing,
modifying, and creating
classes. With Battlemap,
allows users to group
modules based on user-
defined criteria in order to
analyze the relationship
among them.

• Data Dictionary

Tool for tracking data use in
programs. It provides a view
of local data, global data,
parameters, and module
declarations. Users can
analyze complexity of code
with respect to specific data
usage.

• Metric Snapshots

Takes a picture of program
metrics at various times in
the development cycle and
saves it to a repository - a
critical tool for trend
graphing.

• Compare

Tool for identifying
functionally similar
modules. Useful for
identifying modules in which a
found error might be
repeated. Useful for
identifying redundant code
and dead code.

Integration

McCabe IQ is a fully integrated suite of code analysis products, each designed for
addressing the specific needs of different stages in the product cycle. There are
many tools on the market that can help you with specific software development
tasks. But McCabe IQ‘s integrated suite of products is designed
to manage your full software development needs within a single framework.
From planning to development to testing, McCabe IQ brings simplicity,
cohesiveness, and uniformity. “IQ” means “Integrated Quality.”

The McCabe IQ Advantage

McCabe IQ is highly flexible, customizable, and configurable to most
development environments and management needs. It fits itself to the
manager‘s real-world analysis requirements, rather than fitting the analysis to
its functionality.

McCabe IQ‘s source code analysis is automated, and platform and language
independent. Source code from any platform can be brought to the platform
on which McCabe IQ is installed for analysis. Additionally, McCabe IQ can
analyze most programming languages and “dialects”. The complete list can be
obtained from the McCabe & Associates‘ web site, www.mccabe.com.

Above all, McCabe & Associates bring 23 years of experience and research in
the area of source code metrics and baseline code analysis. Through
documentation and training, McCabe IQ pinpoints the relevance and
applicability of available metrics to the challenges of management decision-
making.

T: 800-638-6316
www.mccabe.com

Page 11 of 12

T
:

8
0
0
-
6
3
8
-
6
3
1
6

w
w
w
.
m
c
c
a
b
e
.
c
o
m

P
a
g
e

1
1

o
f

1

Description Si
ze

Q
u

al
it

y
-

C
om

pr
eh

en
si

bi
lit

y

Q
u

al
it

y
-

M
ai

nt
ai

n
ab

ili
ty

Q
u

al
it

y
-

R
eu

sa
bi

lit
y

R
is

k

R
ea

di
n

es
s

Actual Complexity Count of paths tested X

Branch Count of decision branches X

Code Count of source lines X X

Comments Count of comment lines X X

Coupling between
objects

Count of distinct non-inherited
classes on which a class
depends

 X X X X

Cyclomatic Complexity Count of logical paths X X

Cyclomatic Density Cyclomatic Complexity divided
by lines of executable code

X X

Depth of Inheritance Maximum number of steps
from the class node to the root
of the tree and is measured by
the number of ancestor classes

 X X

Essential Complexity Measure of structured-ness of
the code

 X X

Essential Density Essential Complexity
normalized by Cyclomatic
Complexity

 X

Global Data Complexity Quantifies the complexity of a
module’s structure as it relates
to global and parameter data

 X X

Global Data Density Global Data Complexity
normalized by Cyclomatic
Complexity

 X X

Lack of Cohesion Measures of the dissimilarity of
methods in a class by instance
variable or attributes

 X X X X

Number of Children Count of immediate subclasses
subordinate to a class in the
hierarchy

 X X X

Number of Parents Count of classes from which a
class is derived

 X X X

Appendix A.
McCabe Metrics by Category

The following table contains a list of the primary predefined
and derived metrics returned by McCabe IQ. The category
(or categories) of software characteristics to which each
metric belongs is indicated.

Metrics

T: 800-638-6316
www.mccabe.com

Page 12 of 12

Operands Count of the operands in the
code

X

Operators Count of the operators in the
code

X

Pathological Complexity Measure of extremely
unstructured coding behavior

 X X X

Percent Comments Comments divided by the
source number of lines

 X X

Public Access Count of access for class‘s
public and protected data

 X X

Public Data Percentage of public and
protected data in a class

 X X

Response for Class Count of the set of all methods
that can be invoked in
response to a message to an
object of the class or by some
method in the class

 X X

Tested Branches Count of branches tested X

Tested Lines Count of source lines of code
tested

 X

Weighted Methods per
Class

Count of the methods
implemented within a class

 X X

